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Abstract 36 
Frailty is an age-related geriatric syndrome, for which the mechanisms remain largely unknown. 37 
We performed a longitudinal study of aging female (n = 40) and male (n = 47) C57BL/6NIA 38 
mice, measured frailty index and derived metabolomics data from plasma samples. We identify 39 
differentially abundant metabolites related to aging, determine frailty related metabolites via a 40 
machine learning approach, and generate a union set of frailty features, both in the whole cohort 41 
and in sex-stratified subgroups. Using the features, we perform an association study and build a 42 
metabolomics-based frailty clock. We find that frailty related metabolites are enriched for amino 43 
acid metabolism and metabolism of cofactors and vitamins, include ergothioneine, tryptophan, 44 
and alpha-ketoglutarate, and present sex dimorphism. We identify B vitamin metabolism related 45 
flavin adenine dinucleotide and pyridoxate as female-specific frailty biomarkers, and lipid 46 
metabolism related sphingomyelins, glycerophosphoethanolamine and glycerophosphocholine 47 
as male-specific frailty biomarkers. These associations are confirmed in a validation cohort, with 48 
ergothioneine and perfluorooctanesulfonate identified as robust frailty biomarkers. In summary, 49 
our results identify sex-specific metabolite biomarkers of frailty in aging, and shed light on 50 
potential mechanisms involved in frailty.  51 
 52 
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Introduction  76 
With the success of medical innovations and public health interventions, people are living much 77 
longer. However, aging is highly heterogeneous and there is extreme variability in health and 78 
function amongst different individuals of the same age1. Such variability in health can be 79 
captured by the concept of 'frailty', a measurement of overall decline in health with age2. Frailty 80 
can be quantified using a frailty index (FI), which counts the proportion of age accumulated 81 
health-related deficits present in an individual3,4. Higher FI values indicate a greater degree of 82 
frailty and are associated with an increased susceptibility to diseases and mortality4,5. Frailty 83 
indices have been adopted for use in other mammals, including mice6. 84 
 85 
Whilst frailty assessments are commonly used in both the clinic and research, there are no 86 
accepted frailty biomarkers7, and very little is known about the underlying molecular 87 
mechanisms of frailty, distinct from aging. Identification of frailty biomarkers would be beneficial 88 
in enabling earlier identification and tracking of frailty over time, development and testing  of 89 
treatments and interventions7 and contribute to our understanding of the biological pathways 90 
underlying the development of frailty8. Metabolomics is an emerging field that enables 91 
comprehensive and quantitative metabolite assessment in biological samples. Circulating 92 
metabolites can provide a snapshot of the metabolic status of an individual, and as such have 93 
the potential to be both biomarkers, and provide insight into biological pathways changed in 94 
frailty and age. 95 
 96 
There are known metabolic changes in aging, and in fact many of the 'hallmarks' of aging are 97 
linked to unfavorable metabolic shifts9. Less is known about metabolic changes in frailty, 98 
although studies have shown that glucose intolerance and insulin dynamics are closely linked to 99 
physical frailty in both humans and mouse models10,11. Metabolomics studies of aging in 100 
humans are beginning to identify specific metabolite markers12. Elevated high- and decreased 101 
low-density lipoproteins are well established in older individuals, and associated with poor 102 
clinical outcomes13. Changes in amino acids are observed in aging, including increased tyrosine 103 
and decreased tryptophan14,15. Both lipids and amino acids are extensively related to nutrient 104 
sensing pathways, such as the mammalian target of rapamycin (mTOR)16 that acts as a central 105 
regulator in aging17. Oxidative stress and inflammation- related metabolites are also associated 106 
with aging, particularly acylcarnitines, sphingomyelins18, and cytochromes P450 metabolites19. 107 
However, the majority of these metabolomics studies are cross-sectional in design, comparing 108 
separate groups of young and old individuals, and there are few studies exploring how 109 
metabolites change longitudinally within the same individuals as they age20,21. Although early 110 
metabolomics studies focused on associations with chronological age only, there is a growing 111 
focus on metabolomics studies of frailty in humans, and these studies have revealed 112 
associations with energy and nutrition metabolism22 and with amino acid metabolism23,24. While 113 
these studies hint at a strong link between frailty and metabolism, they are limited by small 114 
sample sizes, and cross-sectional designs.  115 
 116 
Additionally, sex dimorphism in aging is widely observed across many levels. Most notably, at 117 
every age, women are more frail than men, despite having longer life expectancy25. There are 118 
also clear sex differences in the risk and prevalence of age-related diseases, including 119 
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metabolic diseases26,27. Many studies have revealed clear sex differences in metabolic aging 120 
across multiple tissues including blood28, brain29, and adipose tissue30. Sex differences in 121 
metabolites related to lipid metabolism, such as cholesterol30 and sex steroid hormones30, 122 
amino acids and acylarnitines31 are widely observed, and such differences can be age-123 
dependent. The mechanisms, and especially metabolic mechanisms, underlying these sex 124 
differences in aging and frailty are not well understood, despite some recent efforts25,32,33. 125 
Although studies have explored baseline sex differences in circulating metabolites, as far as we 126 
are aware, there are currently no longitudinal metabolomics studies exploring sex differences in 127 
frailty. 128 
 129 
Here, we completed a longitudinal study of female and male mice and generated matched 130 
metabolomics and frailty data across 5 time points. We use time-course and network analysis to 131 
identify age related metabolites, apply machine learning algorithms to select frailty-related 132 
metabolite features, perform an association study on frailty features, and build a metabolite 133 
frailty clock. We reveal that age-related metabolites are enriched in lipid metabolism, and 134 
suggest that amino acid metabolism and metabolism of cofactors and vitamins are enriched for 135 
frailty related metabolites. In particular, we demonstrate strong sex differences in metabolite 136 
features and their associations with frailty. We confirm these findings in a validation cohort, 137 
specifically finding consistent associations for 9 candidate frailty biomarkers, and the metabolite 138 
frailty clock achieves better prediction performance than age and sex alone, but only in male 139 
samples. Our results provide candidate metabolomic biomarkers of frailty for future testing in 140 
clinical studies, and provide insights into possible mechanisms underlying sex differences in 141 
frailty and aging.  142 

Results  143 
Metabolomics data variation 144 
We performed a longitudinal study of female (n = 40) and male (n = 47) C57BL/6NIA mice at 5 145 
time points, and derived metabolomics data for a total of 321 samples that have valid 146 
metabolomics data (Table1). In order to investigate aging- and frailty- related metabolites and 147 
mechanisms in naturally aging mice, we used non-NMN treated mice (female, n = 20; male, n = 148 
24) as the discovery cohort for the ensuing analysis (Fig.1). To investigate the metabolomic 149 
data variation, we performed a principal component analysis (PCA), including a set of 781 150 
metabolites. The PCA plot indicated clear separation of samples across time points (by PC1) 151 
and by sex (by PC2) (Supplementary Fig.1a). We then performed linear regression analyses 152 
on PCs and observed clustering of factors of interest (e.g., sex, time point, mouse ID) in the 153 
associations with PCs (Supplementary Fig.1b) based on p-values. We selected time points 154 
and sex as representative variables in the ensuing analysis as they showed the smallest p-155 
values among the factors within the same cluster. Mouse ID also showed an association with 156 
PC2 at a significant level and was included to account for repeated measurements on the same 157 
mouse. 158 
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 159 
Metabolomic signatures of aging across sexes 160 
After the determination of covariates, we performed metabolite differential abundance analyses 161 
to identify metabolites that were related to general aging. That is, metabolite abundances that 162 
significantly changed for these mice across the sampled time points. We considered the pattern 163 
of metabolite abundance globally over time, by fitting a time series smoothing spline, accounting 164 
for mouse ID and sex. We found 527 (67.5% of total detected metabolites) differentially 165 
abundant metabolites (DAMs) over the time-course within all mice (both females and males) 166 
(Supplementary Fig.2a). 167 
 168 
In order to select subsets of metabolites with similar abundance over the time course and, more 169 
importantly, highly related to aging independent of sex, we performed co-abundance network 170 
analysis on the 527 metabolites derived above. We derived two metabolite subsets, subset1 (n 171 
= 200) and subset2 (n = 125) (Supplementary Fig.2b) of which the eigenvalues showed strong 172 
associations (p < 0.001) with age, presenting a generally decreasing trend in abundance in 173 
aging (Fig.2a). Significantly higher proportions of metabolites within the amino acids super-174 
pathway were observed in subset 1 (69 metabolites, 34.5% of subset1, χ2 (df = 2, N = 781) = 175 
25.3, p < 0.001) and those in the lipids super-pathway for subset 2 (100 metabolites, 80% of 176 
subset2, χ 2 (df = 2, N = 781) = 141.1, p < 0.001), compared to the rest of metabolites. 177 
Metabolite set enrichment analysis results on two subsets aligned with the above classification, 178 
with amino acid metabolism (subset1) and lipid metabolism (subset2) pathways over-179 
represented (Supplementary Fig.2c and d). To further select metabolites that play important 180 
roles in aging, we selected 86 hub metabolites, 46 metabolites from subset1 and 40 from 181 
subset2, based on module membership in the network and significance (correlation coefficient 182 
between eigenvalue and age) (Supplementary Fig.2e). These 86 metabolites were defined as 183 
core age-related metabolites in the ensuing analyses, and include guanidinoacetate, 184 
methylamalonate (MMA) and sphingomyelin species (Supplementary Table1). 54.7% of these 185 
metabolites (47 total, 9 from subset1 and 38 from subset2) are from the lipid super-pathway, 186 
also evidenced by enrichment analysis (Fig.2b). This result suggests lipid metabolism is among 187 
the key mechanisms contributing to general aging.  188 
 189 
Sex specific metabolomic signatures of aging 190 
To identify sex specific metabolomic signatures, we investigated DAMs within 1) females only 191 
(significant change in abundance in the whole time frame), n = 498 DAMs (63.8%, 498/781), 2) 192 
males only, n = 253 DAMs (32.4%, 253/781); and 3) sex differences (significantly differentially 193 
abundant in females and males considering the whole time frame), n = 331 DAMs, (42.4%, 194 
331/781). The results suggest significant sex differences in metabolite abundance in the aging 195 
process. 196 
 197 
It was interesting to observe a common set of 97 metabolites after merging the above three sets 198 
of DAMs with the 527 DAMs derived from the mixture of both sexes (sex-independent) (Fig.3a; 199 
Supplementary Table2). These metabolites not only were related to aging in both sexes, but 200 
also presented sex differences in aging (Supplementary Fig.3). Notably, these included 8 201 
acylcarnitines, for instance, oleoylcarnitine (C18:1) and palmitoleoylcarnitine (C16:1). Among 202 
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the 97 metabolites, 41 are in lipid and 22 in amino acid super pathways, representing 64.9% of 203 
the 97 metabolites. Enrichment analysis revealed 11 KEGG pathways overrepresented 204 
(Fig.3b), mostly within lipid metabolism and digestive system pathways.  205 
 206 
Apart from the common set, among the 331 metabolites that are different between males and 207 
females across the investigated timeframe, there are only 21 metabolites that present sex 208 
differences (distinct abundance in females and males) and do not present significant abundance 209 
differences over time (Supplementary Table2). This indicates that the majority of sex 210 
differential metabolites also change with age. In terms of female-specific metabolites that are 211 
changed with age, that is, metabolites detected in both female and sex difference DAM sets, the 212 
187 in this category included amino acids and acylcarnitines and were enriched for amino acid 213 
metabolism pathways (Fig.3c; Supplementary Table2). Many fewer male-specific age-related 214 
metabolites were observed, with a total of only 23, including phosphocholine and spermine. One 215 
metabolite, corticosterone, changed with age in both females and males separately 216 
(Supplementary Fig.4), but was not detected to change with age when the entire cohort of 217 
mice was considered. Altogether, we found metabolites involved in lipid metabolism and 218 
digestive system pathways contribute to aging and present strong sex differences. Specifically, 219 
amino acid metabolism-related metabolites are associated with aging in female mice. 220 
 221 
Sex independent metabolite features of frailty 222 
Having identified age-related metabolites, we were interested to identify metabolites specifically 223 
associated with frailty. Frailty is a complex geriatric syndrome. For each mouse at a certain time 224 
point, FI is composed of the base FI (median FI of the corresponding sex and age group) and 225 
devFI (the deviation of individual FI from the median FI at corresponding age- and sex-specific 226 
group). By definition, base FI is highly related to age, but devFI is age independent 227 
(Supplementary Fig.5). 228 
 229 
In order to find metabolites related to frailty, we performed feature selection outlined in Fig.4a.  230 
We investigated metabolites that were related to both FI and devFI, by performing feature 231 
selection with elastic net regularization, via a 100 times repeated 5-fold cross validation 232 
approach. Based on the rank of presence frequency, we selected 156 and 149 metabolites 233 
predictive of FI and devFI, respectively (Supplementary Fig.6a; Supplementary Table3). 86 of 234 
these metabolites were identified as both devFI and FI features (Fig.4b), suggesting both 235 
overlapping and distinct metabolite signatures of FI and devFI. The majority of identified FI and 236 
devFI metabolites were within the amino acid and lipids super pathways (Supplementary 237 
Fig.6b). Three metabolites were simultaneously identified as FI-, devFI- and age-metabolites, 238 
including ergothioneine that decreases with age and frailty in both females and males 239 
(Supplementary Fig.7). When looking at the top enriched KEGG pathways for FI and devFI, 240 
there were 11 common pathways (out of the top 15 by p-value) across both groups 241 
(Supplementary Fig.6c and d), including 7 amino acid metabolism pathways, nicotinate and 242 
nicotinamide metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism and ABC 243 
transporters. To further identify core-metabolites related to frailty, we derived 21 FI-age and 86 244 
devFI features by merging age-related metabolites (86 hub metabolites) and devFI metabolites 245 
with the FI metabolites respectively, resulting in a set of 104 union features (Fig.4b) which are 246 
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enriched for amino acid metabolism and metabolism of cofactors and vitamins pathways 247 
(Fig.4c). These results suggest these metabolic pathways, notably, amino acids and B vitamin 248 
metabolism are specifically important in the development of frailty. 249 
 250 
Despite the common metabolites, we observed 61 metabolites that are unique to devFI 251 
(Fig.4b), including hippurate, choline, hypotaurine, phenylacetyltaurine, and adenosine 5'-252 
diphosphoribose. Enrichment analysis based on these metabolites led to efferocytosis and ABC 253 
transporters. The results suggest these metabolites and pathways are associated with frailty in 254 
a completely age- and sex-independent way. 255 
 256 
Association study of metabolite features with frailty outcomes 257 
To test the associations of the individual metabolite features with frailty outcomes (Fig.5a), we 258 
applied linear mixed regression models and subjected the 104 union frailty features to a 259 
longitudinal association study. First, we considered only metabolite abundance at the current 260 
timepoint (Agec). For the current FI (FIc) and devFI (devFIc), we found 47 and 16 metabolites, 261 
respectively presented coefficients significantly different from 0 (Supplementary Table4). 262 
Among the 47 FIc metabolites, three metabolites (leucine, N-acetylthreonine, and X-25422), 263 
presented a significant metabolite abundance by age interaction term (Supplementary Table5), 264 
indicating that the association of these metabolites with FIc is age-dependent. Despite this, 265 
leucine showed a generally consistent positive correlation with FIc at each age group, but this 266 
was not the case for N-acetylthreonine and X-25422 (Supplementary Fig.8a). The remaining 267 
45 metabolites (those without significant interaction terms, plus leucine) are associated with FIc 268 
independent of age. That is, individual mice with higher abundance of these 45 metabolites are 269 
either more (19 metabolites, β > 0) or less (26 metabolites, β < 0) frail in a cohort. For devFIc, 270 
individual metabolites were also associated with both higher (9 metabolites, β > 0) and lower (7 271 
metabolites, β < 0) frailty scores. Eight metabolites were identified as significantly associated 272 
with both FI and devFI (Fig.5b). For each of these metabolites, the coefficient of association 273 
was in the same direction, indicating the same trend of association with both FI and devFI. 274 
 275 
Given the longitudinal nature of our dataset we were interested to observe whether metabolite 276 
abundance at any specific timepoint was associated with frailty at a future timepoint (Fig.5a). 277 
Unfortunately, we didn’t observe any metabolites that showed an overall significant association 278 
with future FI (FIf) or future devFI (devFIf). When focusing only on the abundance of metabolites 279 
at the baseline time point (~400 days), we found a single metabolite, alpha-ketoglutarate, was 280 
negatively associated with both FIf and devFIf (Supplementary Fig.8b). Next, we considered 281 
whether there were associations between current metabolite abundances, and a change in FI 282 
from one timepoint to the next (ᐃFI or ᐃdevFI, Fig.5a). We saw no associations with ᐃdevFI 283 
but found 27 metabolites that showed significant associations with ᐃFI (Fig.5c and 284 
Supplementary Table4). No significant interaction terms were observed for these metabolites, 285 
indicating that these associations were not age-dependent. 20 metabolites (β > 0, e.g. 286 
creatinine) were associated with increased frailty and the remaining 7 (β < 0, e.g. phenyllactate) 287 
were associated with decreased frailty (Supplementary Fig.8c). Finally, we considered whether 288 
changing abundances of a metabolite over time (ᐃMA), might be associated with frailty (Fig.5b) 289 
but found no significant associations.  290 
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 291 
Combining the 3 sets of metabolites above (those significantly associated with FIc, ᐃFI, or 292 
devFIc) gives a total of 63 metabolites, of which 23 are present in 2 or more sets (Fig.5d). 293 
These metabolites represent candidate biomarkers for frailty and include phenyllactate, 294 
ergothioneine, nicotinamide riboside, creatinine, alpha-ketoglutarate, isoleucine and valine.  295 
 296 
Sex specific metabolite features of frailty 297 
Sex differences are common in aging and frailty. We investigated the performance of the 298 
generalized linear models that were trained to predict FI or devFI in the whole cohort (Fig.4a), in 299 
the females and males separately. We found significant differences (two-tailed t-test, p < 0.001) 300 
between the R-squared values derived from female and male samples (Supplementary 301 
Fig.9a), suggesting the associations of metabolites with FI and devFI are sex specific and 302 
stratification by sex is appropriate for this analysis. Interestingly, the model performance was 303 
better in the females than males. 304 
 305 
In order to select sex specific metabolites related to frailty, we stratified the whole cohort into 306 
female and male subgroups and re-selected metabolite features as above. For females, we 307 
derived 133 and 45 metabolites related to FI and devFI, and for males, we obtained 32 and 92, 308 
respectively. Of these only 7 were associated with FI, and 8 with devFI, in both sexes. Despite 309 
this, for both males and females, the majority of the identified metabolites were within amino 310 
acids and lipids super pathways (Supplementary Fig.9b), and the enriched pathways were 311 
similar between males and females. They predominantly included amino acid metabolism, 312 
metabolism of cofactors and vitamins, mineral absorption, and protein digestion and absorption 313 
related to the digestive system (Supplementary Fig.9c and d). 314 
 315 
Following the union feature workflow (Fig.4a), we obtained 58 union features for females and 21 316 
for males related to overall FI. Within the female union features, 50% of the metabolites were 317 
related to amino acid and lipid pathways, whilst the male union features were enriched in lipid 318 
super pathways (χ2(df = 2, N = 781) = 4.11, p-value = 0.042). Excluding the union features 319 
associated with frailty in the whole cohort, we identified 25 and 9 metabolites that are unique 320 
metabolite features identified only in females or males (Fig.6a). These sex specific features 321 
include kynurenate and quinolinate for females and sphingomyelin and creatinine for males. 322 
These results suggest sex specific biomarkers for frailty may be appropriate. 323 
 324 
Association study of sex specific frailty features  325 
To investigate the association of individual metabolites with frailty in each sex, we performed 326 
mixed linear model regressions using the FI union features for females and males separately, 327 
as above. In females, we first considered solely the current metabolite abundance and found 328 
that 38 and 16 metabolites, respectively, were significantly associated with FIc and devFIc 329 
(Supplementary Table6). As with the whole cohort, metabolites were both positively (21 for FIc 330 
and 11 for devFIc) and negatively (17 for FIc and 5 for devFIc) associated with frailty outcomes. 331 
Notably, 6 metabolites were identified as both FIc and devFIc related (Fig.6b). When considering 332 
associations between current metabolite levels and either future frailty, or changing frailty levels 333 
(Fig.5a), we found 26 metabolites were associated with ᐃdevFI (Supplementary Table6). 334 
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These associations were independent of age, suggesting a relationship between metabolite 335 
levels and either increasing (10 metabolites, β > 0) or decreasing (16 metabolites, β < 0) rate of 336 
development of frailty. (Fig.6c). Next, we considered the relationship between frailty outcomes 337 
and changing metabolite abundances over time, and found one metabolite, ergothioneine, 338 
which was significantly associated with devFIc. We combined the four datasets from these 339 
female-specific frailty association studies to identify a total of 52 metabolites, of which 3 340 
metabolites were present across 3 lists, including FAD and ergothioneine, and 23 metabolites 341 
were present across 2 lists (Supplementary Fig.10a). These 26 metabolites are potential 342 
female specific frailty biomarkers.  343 
 344 
In male samples, we followed the same analysis flow. Considering current metabolite 345 
abundance, we found 19 and 12 metabolites that were associated with FIc and devFIc 346 
(Supplementary Table6). Of these, 11 metabolites were excluded as they had significant 347 
interaction terms, indicating that the association of the metabolite with FIc depends on age 348 
(Supplementary Table7). No significance was found for the remaining regressions for the male 349 
samples. The results include three GPEs, one GPC, creatine, and phenyllactate, that may be 350 
potential male specific frailty biomarkers (Supplementary Fig.10b).  351 
 352 
Validation of the frailty associated metabolites 353 
In order to validate the metabolites associated with frailty in an external cohort, we used female 354 
(n = 20) and male (n = 23) mice samples under long-term NMN treatment (Table1). To 355 
investigate if the associations of our identified frailty features with frailty outcomes persist under 356 
the intervention, we used union features identified from the whole cohort, and females and 357 
males separately, and performed the same association analysis. For sex-independent features, 358 
we found one metabolite, perfluorooctanesulfonate, that was significantly associated with 359 
current frailty (FIc) in the validation cohort. There were seven metabolites associated with FI 360 
change over time (ᐃFI, Fig.5a), including ergothioneine, guanidinoacetate, N-361 
glycolylneuraminate, X-12798, creatinine, dimethylarginine (ADMA + SDMA), and N-acetyl-362 
beta-alanine. In male samples only, 2-hydroxydecanoate maintained a significant association 363 
with FIc at one time point (Supplementary Fig.11). Although NMN treatment delays frailty 34, 364 
the persistent association of these metabolites with frailty outcomes reveals evidence for their 365 
robustness as possible frailty biomarkers.     366 
 367 
Development of a metabolite-based frailty clock 368 
To build a model to accurately predict frailty using metabolomics features in aging mice, we fit a 369 
random forest model in the discovery cohort, with FI as the dependent variable and the 370 
combination of identified union features from the whole cohort, female- and male- specific 371 
analysis (total n = 139 metabolites) as the independent variables. We further determined the top 372 
63 metabolite features ranked by the presence frequency (Supplementary Fig.6a) gave the 373 
best performance in predicting FI (Supplementary Fig.12). Among the 63 metabolite features 374 
that can be found in the whole cohort derived features, 24 metabolites were also identified as 375 
female-specific frailty related metabolites, and 4 as male-specific. Our final model, metabolite 376 
frailty clock, included these 63 informativity-based metabolites, age and sex. We also fit a model 377 
using all 781 metabolites detected in our study, as a comparison. Both random forest models 378 
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performed well in the discovery cohort (R2 = 0.95, RMSE = 0.022 for RF with 781 metabolites; 379 
R2 = 0.96, RMSE = 0.019 for metabolite frailty clock), and outperformed a benchmark model of 380 
merely age+sex (R2 = 0.51, RMSE = 0.053) (Fig.7a). Importantly, we examined the performance 381 
of the metabolic frailty clock in the validation cohort, and although it achieves similar 382 
performance as the age+sex model trained in the validation cohort across the entire cohort 383 
(Fig.7b), it outperforms age+sex in male samples (Fig.7c). Despite the fact that there is clearly 384 
room for improvement, these results suggest that frailty can be accurately predicted in aging 385 
mice using metabolite features.   386 

Discussion 387 
Using a longitudinal study of female and male mice, we identified both sex-independent and 388 
sex-specific metabolomic signatures of aging and frailty. Overall, we found that age related 389 
metabolites are enriched for lipid metabolism, while frailty related metabolites are enriched for 390 
amino acid metabolism and metabolism of cofactors and vitamins. B vitamin metabolism-related 391 
metabolites and lipid metabolism-related metabolites, respectively, are determined as candidate 392 
female- and male-specific frailty biomarkers.  393 
 394 
Age-related metabolites  395 
Using a time course analysis in mice, we found a total of 527 metabolites significantly changed 396 
with age, representing the majority of measured metabolites. This result suggests dramatic 397 
change in the abundance of most metabolites in aging, and aligns with a previous longitudinal 398 
human study21. Among these age-related metabolites, we identified 86 hub metabolites by 399 
network analysis, and observed that these metabolites were enriched for lipid metabolism, 400 
including biosynthesis of unsaturated fatty acids, primary bile acid biosynthesis, and fatty acid 401 
elongation. Interestingly, several studies in mice have demonstrated manipulation of lipid 402 
metabolism as a method to extend longevity35,36. Our results using longitudinal data provide 403 
further evidence of the importance of lipid metabolism in aging. In terms of the individual 404 
metabolites changed in age, we identified 10 sphingomyelin species, which are of interest given 405 
the established link between sphingomyelins and longevity in humans20. 406 
 407 
Additionally, we found that 42% of measured metabolites were significantly different between 408 
males and females, and the majority of these were also changed with age. Metabolites involved 409 
in aging and sex differences were enriched for a spectrum of pathways involved in lipid 410 
metabolism and digestive system. While sex differences in lipid metabolism have been widely 411 
recognised, our finding provides further evidence in the context of aging and aligns with the 412 
result from humans that the lipidome exhibits significant age-dependent differences between 413 
sexes37. Moreover, liver is the primary tissue for bile acid metabolism38, fatty acid metabolism39 414 
and taurine metabolism (conjugation with bile acid40), all pathways identified in our study as 415 
displaying sex differences in aging. This suggests that the liver is strongly influenced by 416 
biological sex in aging, which aligns with transcriptomic results from our lab41. Furthermore, the 417 
presence of the mineral absorption and ferroptosis pathways in our findings42,43 reveal that the 418 
impact of aging on iron homeostasis44 is sex specific. 419 
 420 
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Sex stratified analysis revealed female specific metabolite markers of aging include amino acids 421 
and acylcarnitines. Previous work has extensively shown the role of amino acids and 422 
acylcarnitines in the regulation of aging45,46. Our results indicate significant changes of these 423 
metabolites in females in aging, but not necessarily in males, which is also implied in other 424 
studies47. As for the male specific aging biomarkers, we found phosphocholine (adjusted for 425 
sex) and spermine (only in males), both of which have been previously linked to overall 426 
aging48,49. Together, these findings give clues about how metabolic aging may occur differently 427 
in males and females. 428 
 429 
Frailty related metabolites  430 
Although age-related metabolic markers are of interest, markers that are associated with health 431 
in aging may provide more clues about underlying mechanisms of the aging process, rather 432 
than the passing of time. To this end, we sought to identify metabolic features of frailty, a 433 
validated quantification of health in aging in both humans and mice. As frailty is strongly 434 
correlated with age, it was important that we identify metabolic markers of frailty, independent of 435 
age. We used a novel approach of calculating devFI, the deviation from the median frailty index 436 
of the corresponding age and sex group. In this way we are able to identify metabolites 437 
associated with individual variations in frailty at a given age and sex group, and distinguish 438 
these from metabolic changes that arise from aging. We applied a machine learning approach 439 
to select metabolites that are associated with both outcomes, FI and devFI. In the whole cohort 440 
study, we identified 149 metabolites features for devFI, among which 61 were not also 441 
associated with FI or age (Fig.4b). These include hippurate, a gut microbiome derived 442 
metabolite that has been previously associated with aging50. These metabolites are particularly 443 
interesting for further analysis as underlying markers of health, independent of age.  444 
 445 
Overall, frailty-related metabolites were heavily enriched in amino acid metabolism and 446 
metabolism of cofactors and vitamins. The majority of the 20 proteinogenic amino acids 447 
metabolism pathways were enriched, suggesting amino acids serve as the main driver of frailty 448 
dynamics in mice. In humans, altered amino acid metabolism is also suggested to be 449 
associated with frailty24, in particular tryptophan metabolism51. Interestingly, nicotinate and 450 
nicotinamide metabolism were also over-represented in these candidate frailty biomarkers. 451 
Recent work has shown that boosting nicotinamide levels is associated with improved health in 452 
aging, including improved frailty34,52,53. These results suggest pivotal differences in the metabolic 453 
mechanisms underlying aging and frailty. 454 
 455 
Additionally, we applied linear mixed models to the metabolite features identified for frailty to 456 
look at their specific univariate association with frailty outcomes (Fig.5a). Notably, we found 23 457 
metabolites that were associated with more than one frailty outcome (i.e., current FI, current 458 
devFI and/or change in FI over time) (Fig.5d), including ergothioneine, nicotinamide riboside 459 
(NR), phenyllactate, and creatinine. Interestingly, ergothionine is one of the most robust markers 460 
in our study, which is identified as FI, devFI and age-associated across both males and females. 461 
It has been previously identified as a frailty biomarker54, and is thought to promote healthy 462 
aging55. NR is an NAD precursor, part of the nicotinamide metabolism pathway, and boosting 463 
levels of NR are associated with improved health in aging53,57. Phenyllactate, is a catabolite of 464 
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phenylalanine (phenylalanine metabolism is identified as enriched from frailty related 465 
metabolites) derived from Lactobacillus58, providing further evidence of the possible involvement 466 
of the microbiome in the development of frailty. Creatinine, a muscle breakdown product, has 467 
been associated with sarcopenia, functional limitation and frailty59. Additionally, alpha-468 
ketoglutarate was the only metabolite for which the abundance in middle-aged mice was 469 
predictive of future frailty, suggesting it could be an early-biomarker of frailty, and/or a viable 470 
target for early intervention. In support of this, a recent study shows that alpha-ketoglutarate 471 
supplementation in mice reduced frailty56. Taken together, our results provide preclinical 472 
evidence for several potential biomarkers for frailty. 473 
 474 
Sex dimorphism in frailty  475 
In order to identify sex-specific metabolic markers of frailty, we completed sex-stratified 476 
analysis. We identified vitamin B3/tryptophan metabolites, kynurenine and quinolinate, as being 477 
specifically associated with frailty in females. The findings for these two metabolites are 478 
consistent with previous studies60,61, where the link to frailty is sex-specific. FAD (vitamin B2), 479 
was also significantly associated with multiple frailty outcomes in females (Supplementary 480 
Fig.9a). FAD is one of the active forms of vitamin B2, however, previous studies in both sexes 481 
found that intake of vitamin B2 has no association with frailty62,63. Given our novel findings, we 482 
suggest further investigation into FAD as a female-specific marker of frailty. Another female-483 
specific frailty biomarker is pyridoxate (vitamin B6), which is reported to be related to frailty64. In 484 
male mice, we identified mainly lipid metabolism-related metabolites, including sphingomyelins, 485 
three GPE species and one GPC species. These metabolites are lipid species that have been 486 
previously associated with frailty65,66 in both sexes, so the male specificity needs further 487 
investigation. Taken together, our results reveal evidence of sex specific biomarkers for frailty, 488 
and imply that B vitamin metabolism is a key feature of frailty development in females and lipid-489 
related metabolism for males. We highly recommend applying the sex stratification approach in 490 
the future study of frailty biomarkers and mechanisms.  491 
 492 
Importantly, and often ignored in other frailty biomarkers studies, we confirmed whether the 493 
same metabolites were associated with frailty outcomes in an independent validation cohort. 494 
Although the association of not all metabolites held in this cohort, we did find 9 metabolites 495 
showing persistent significance in the association with frailty outcomes, including ergothioneine 496 
and creatinine. Our validation cohort included mice that had long-term treatment with the NAD 497 
booster, NMN, suggesting that the association of these metabolites with frailty outcomes may 498 
be universal even under interventions, so these biomarkers should be investigated further. 499 
 500 
Many ‘clocks’ have been built to predict chronological age based on either epigenetic or 501 
metabolomic features67,68. There is a growing focus, however, on building models to predict 502 
health- rather than age-related outcomes. Here, we build the first clock to directly predict frailty 503 
in mice. Our model performs extremely well in our discovery cohort, and although the 504 
performance of the frailty clock is similar to that of an age+sex only model (trained within the 505 
validation cohort) in females for the validation cohort, our clock outperforms the simple model in 506 
male samples. These results provide preliminary evidence that it is possible to predict frailty 507 
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using metabolites, but suggest further work should be done in large datasets to develop a more 508 
universal metabolomics-based frailty clock.  509 
 510 
There are some limitations to this study. Our validation dataset was relatively small, and mice 511 
were treated with NMN that may alter metabolite abundance levels. We suggest future work 512 
should validate these potential frailty biomarkers in larger cohorts, as well as in other mouse 513 
strains and humans. Additionally, the sample size for metabolomics data is relatively small, 514 
especially at the older ages, which might decrease the power of statistical analysis. Survival 515 
bias is also an issue to consider, as mice died over the course of the study and only those that 516 
were longest lived made it to timepoint 4 and 5. For future work, it will be ideal to conduct 517 
studies in a broader age range with an increased number of mice. 518 
 519 
In summary, we performed the first longitudinal study of naturally aging female and male mice 520 
looking at metabolomics of frailty. We found aging related metabolites are mainly involved in 521 
lipid metabolism while frailty related metabolites are predominantly parts of amino acid 522 
metabolism and metabolism of cofactors and vitamins. Apart from whole cohort frailty 523 
biomarkers, we demonstrated the sex dimorphism in the associations between metabolite and 524 
frailty, and proposed sex specific frailty biomarkers. 525 

Material and methods 526 
Mice samples  527 
Mice used in this study are from a larger intervention study, so detailed methods can be found in 528 
Kane et al (2024)34. Briefly, C57BL/6NIA mice, female (n = 40) and male (n = 47) were obtained 529 
from the National Institute on Aging (NIA) Aging Rodent Colony, among which, 20 female and 530 
23 male mice were subjected to nicotinamide mononucleotide (NMN) treatment. Mice were 531 
group housed (4-5 mice per cage, although over the period of the experiment mice died and 532 
mice were left singly housed), at Harvard Medical School in ventilated microisolator cages, with 533 
a 12-hour light cycle, at 71°F with 45-50% humidity. Mice were fed AIN-93G Purified Rodent 534 
Diet (Dyets Inc, PA). All animal experiments were approved by the Institutional Animal Care and 535 
Use Committee of the Harvard Medical Area. In order to investigate aging and frailty related 536 
metabolites and mechanisms in naturally aging mice, we used non-NMN treated mice (female, n 537 
= 20; male, n = 24) as the discovery cohort for principal component analysis, feature selection, 538 
sex stratified analysis, association study, and metabolite frailty clock model building (Fig.1). We 539 
then tested the selected metabolite features and model in the NMN treated mice (validation 540 
cohort).  541 
 542 
Mouse Frailty assessment 543 
Behavioral and clinical variables for clinical frailty index were measured in both the discovery 544 
and validation cohorts, at each time point (Table1). We utilized the mouse clinical frailty index2  545 
(FI) that contains 31 health-related items for this study. Briefly, mice were scored either 0, 0.5 or 546 
1 for the degree of deficit they showed in each item with 0 representing no deficit, 0.5 547 
representing a mild deficit and 1 representing a severe deficit69. Apart from FI score itself, we 548 
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introduced devFI score, that is the deviation of individual FI from the median FI for the 549 
corresponding sex, at the corresponding time point.  550 
 551 
Blood collection and processing  552 
Mice were fasted for 5-6 hours, anesthetized with isoflurane (5%) and then blood was collected 553 
from the submandibular vein with a lancet (maximum 10% of mouse body weight, approx. 200-554 
300 ul), into a tube containing 20ul of 0.5M EDTA. Blood was mixed and stored on ice. Whole 555 
blood was centrifuged at 1500×g for 15 mins, plasma was removed and frozen at -80°C for 556 
subsequent metabolomics. 557 
 558 
Metabolites extraction, quantification and processing  559 
Global metabolomics analysis was completed by Metabolon. Samples were prepared using the 560 
automated MicroLab STAR® system (Hamilton Company), and analyzed using Ultrahigh 561 
Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). We used 562 
raw metabolite data (peak area). We performed batch effects mitigation by calculating the mean 563 
metabolite value for the baseline time point across all mice, comparing it to the mean value of all 564 
other time points and excluding metabolites that presented the mean of the baseline 565 
significantly lower (0.05x, compared to the mean of all other time points) or significantly higher 566 
(10x compared to the mean of all other time points). We normalized each sample by dividing the 567 
metabolite value by the median of metabolite values for that sample to account for any 568 
collection batch effects and then derived the (natural) log-transformed values as the metabolite 569 
abundance. We derived 781 metabolites with greater than 5% unique abundance across 570 
samples.  571 
 572 
Metabolomics data variations 573 
The number of metabolomics data is summarised in Table1. Metabolite abundance data was 574 
subjected to principal component (PC) analysis. We derived PC1 to PC10 and for each PC as 575 
the dependent variable, we applied linear regression models and obtained p-values, where we 576 
used mouse ID, time points, sex, cage (categorical variables), and age at assessment 577 
(continuous variables), respectively as the independent variable. Independent variables tested 578 
were then clustered according to Euclidean distance.  579 
 580 
Differential abundance analysis of metabolites 581 
Log-transformed metabolite abundance data were subjected to differential abundance analysis 582 
by using the ‘limma’ pipeline with a spline. Briefly, metabolite abundance data was subjected to 583 
the limma time-course spline analysis, excluding time point 5 due to absence of female samples 584 
at this time point. We generated a matrix for a natural cubic spline based on the remaining time 585 
points, with degrees of freedom set at 3, and the matrix was used as the time factor. Design 586 
matrices for global differential abundance analysis included sex and sex by time interaction 587 
term, without assigning a reference level. The data along with the multi-factor design matrix 588 
were then subjected to linear modeling with the intra-block correlation based block on mouse 589 
ID, and empirical bayes smoothing of metabolite-wise standard deviations. We then determine 590 
metabolite abundance differences by defining a contrast matrix for each of the following four 591 
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categories: 1) mixture of female and male samples, 2) female samples, 3) male samples, and 4) 592 
sex differences.  593 
 594 
Co-abundance analysis 595 
We performed the co-abundance analysis of metabolites (excluding time point 5), with a soft 596 
threshold set at 9 to select metabolite abundance modules. For a given module, we derived the 597 
first principal component as the eigenvalue. To identify the association of metabolite modules 598 
with age, we applied a linear mixed model using the module eigenvalue as independent variable 599 
and age as dependent variable with adjustment for sex, allowing a random intercept for each 600 
mouse. P-values were then adjusted by the Bonferroni correction method. For each identified 601 
subset, metabolites that showed significance greater than 0.2 (correlation coefficient between 602 
the metabolite abundance and the age) and module membership greater than 0.8 were selected 603 
as the hub metabolites in the module.  604 
 605 
Pathway enrichment analysis  606 
Metabolite set enrichment analysis was performed by using the hypergeometric test from R 607 
package FELLA (v. 1.20.0) to identify KEGG pathways that were overrepresented, with a cutoff 608 
of p-value set at 0.05.  609 
 610 
Feature selection  611 
We applied a machine learning approach to identify FI/devFI related metabolites in the 612 
discovery cohort (Fig. 4a). We performed feature selection by fitting generalized linear 613 
regression models using the frailty assessment score (FI or devFI) as the dependent variable 614 
and the 781 metabolites abundance data as the independent variables, through a 100 x 5-fold 615 
cross validation approach. Briefly, we performed 100 runs of multivariate generalized 616 
regression with elastic net regularization. Within each run, the hyperparameters for the least 617 
Root mean square error (RMSE) were tuned using 5-fold cross-validation, and a list of 618 
metabolite features assigned a non-zero coefficient was derived. These lists (from 100 runs) 619 
were merged into a list of metabolite features, which were then ranked according to the 620 
importance, i.e. the presence percentage of the metabolites. We selected metabolites that 621 
made to the top 20% percentile as FI/devFI metabolites. FI is composed of the age-related base 622 
FI and devFI. Hence, we derived FI-age features by combining age metabolites (hub 623 
metabolites from co-abundance analysis) and FI metabolites, and devFI features by combining 624 
devFI metabolites with FI metabolites. We then obtained union features from the union of FI-age 625 
features and devFI features.  626 
 627 
Analysis of metabolite associated with frailty outcomes 628 
For the association study, we applied mixed linear models allowing variations in individual mice 629 
as the random effect. We considered three outcomes for FI and devFI respectively (six in total), 630 
1) the score at current age (agec), FIc and devFIc; 2) a score at a future time point (agef), FIf and 631 
devFIf; and 3) score change to a future time point, ᐃFI and ᐃdevFI (Fig.5a). We considered two 632 
scenarios in the analysis, where abundance of metabolites from a previous time point (agep) 633 
are: a) absent, only the current abundance of metabolites (MAc) is available. For each 634 
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metabolite, we used one of the six score outcomes as the dependent variable and MAc as the 635 
independent variable, adjusting for sex, agec and age change from agec to agef (ᐃage2, only for 636 
outcomes 2) and 3)) in the non-interaction models. For interaction models, we considered 637 
abundance by age term and abundance by age change term; and b) present, the current and a 638 
previous abundance of metabolites and the age interval are available. We focused on 639 
metabolite abundance change (ᐃMA) in this scenario. We used one of the six score outcomes 640 
as the dependent variable and ᐃMA as the independent variable, adjusting for MAc, age change 641 
from agep to agec (ᐃage1), sex, agec and age ᐃage2 (for outcomes 2) and 3)) in the non-642 
interaction models. For interaction models, we included abundance change by age (and/or age 643 
change) terms and current abundance by age (and/or age change) term. devFI score is the 644 
deviation from the median at the age- and sex- specific group. Hence, current age was not 645 
included in the analyses of devFI in both non- and interaction models. The age variable used 646 
above was the actual days of assessment divided by 1,000, in order to be within the same 647 
scale.  648 
 649 
Metabolite frailty clock model building  650 
After obtaining three sets of union features for the whole cohort, females, and males, we 651 
generated a single set of metabolite features from the above three sets. We ranked these 652 
features by occurrence frequency from the feature selection process (100 times repeated cross 653 
validation) within the whole cohort. Via a cross validation approach, we selected ‘mtry’ (the 654 
number of randomly drawn candidate variables out of which each split is selected when growing 655 
a tree) and the number of informativity-based top metabolite features that gave the least RMSE 656 
in predicting FI. The final metabolite frailty clock model was fit in the discovery cohort, 657 
constructed using a random forest regression with FI as the dependent variable and the top 658 
metabolites features, age and sex as the independent variables. We also fit linear regression 659 
models with age and sex as the independent variables in respective the discovery and 660 
validation cohort, and a random forest model using all the 781 metabolites, age and sex in the 661 
discovery cohort for comparative purposes.  662 
 663 
Statistics 664 
All statistical analyses were performed using R (version 4.3.0). Differentially abundant 665 
metabolites (DAMs) are selected by controlling for a 5% Benjamini-Hochberg false discovery 666 
rate (adjusted p-values < 0.05). For univariate association study, the significance was 667 
determined by controlling for a 5% Benjamini-Hochberg false discovery rate (adjusted p-values 668 
< 0.05).  669 

Data availability 670 
Mice metadata, metabolite abundance data, and R markdown file for data analysis are available 671 
at https://github.com/Kane-Lab-ISB/longitudinal-metabolite-analysis-in-mice.git.  672 
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Tables 845 
Table1. List of female and male samples. 846 
 847 

 Discovery cohort Validation cohort 

  
Female 
(n = 20) 

Male 
(n = 24) 

Female 
(n = 20) 

Male 
(n = 23) 

Time points  Samplesa Ageb Frailty indexb Samples Age Frailty index Samples Age Frailty index Samples Age Frailty index 

BL 19 393 0.14 [0.12, 0.16] 21 386 0.19 [0.18, 0.21] 16 393 0.15 [0.13, 0.16] 18 386 0.19 [0.18, 0.22] 

T2 20 541 0.24 [0.22, 0.26] 22 539 0.23 [0.21, 0.25] 19 541 0.21 [0.20, 0.23] 23 539 0.22 [0.20, 0.24] 

T3 17 624 0.29 [0.26, 0.31] 23 635 0.26 [0.24, 0.28] 19 624 0.24 [0.21, 0.26] 23 635 0.25 [0.23, 0.32] 

T4 11 756 0.28 [0.26, 0.34] 19 773 0.27 [0.23, 0.28] 12 756 0.28 [0.23, 0.32] 20 773 0.27 [0.26, 0.31] 

T5 NA  NA NA 9 910 0.37 [0.35, 0.45] 4 899 0.33 [0.29, 0.36] 6 910 0.44 [0.40, 0.45] 

a. Number of samples that have valid metabolomics data 848 
b. Age (days) at assessment for frailty 849 
c. Median [Lower quartile, Upper quartile] 850 
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Figures 851 
Fig.1. Schematic diagram of the workflow.  852 
The longitudinal study starts with female (n = 40, yellow circles) and male (n = 47, blue circles) 853 
C57BL/6NIA mice. Frailty was assessed and blood samples were collected at 5 time points from 854 
BL to T5 (exact days of experiments are shown in Table1). Plasma samples were derived from 855 
blood samples and were then subjected to metabolite quantification. In order to investigate 856 
metabolites related with natural aging and frailty, feature selection, sex stratified analysis, 857 
association study and the frailty clock were all performed in the control samples without 858 
intervention as the discovery cohort. The metabolite biomarkers and a metabolite clock for frailty 859 
were then tested in the validation cohort.     860 
 861 
 862 

 863 
 864 
 865 
 866 
 867 
 868 
 869 
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Fig.2. Sex independent age-related differentially abundant metabolites in 870 
longitudinal study.  871 
Differential abundance analysis was performed using all samples (excluding time point T5) in 872 
the study. Sex-independent age-related differentially abundant metabolites (DAMs) were 873 
selected from comparisons of the mixture of female and male samples at different time points 874 
and by controlling for a 5% Benjamini-Hochberg false discovery rate (adjusted p-values < 0.05). 875 
These DAMs were then subjected to a co-abundance analysis, and subset1 and subset2 were 876 
determined to be significantly associated with age by linear mixed models. (a) Dynamics of 877 
metabolite abundance in each sex, derived from two subsets (subset1, n = 200 metabolites; 878 
subset2, n = 125). After determining the hub metabolites based on metabolite correlation with 879 
age and module membership, hub metabolites were subjected to metabolite set enrichment 880 
analysis. (b) Over-represented pathways (y-axis) from the hub metabolites from the two 881 
subsets. The number of hits (metabolite) from the hub metabolites set is shown by x-axis, ratio 882 
of the hit number to total metabolites in the enriched pathway is represented by dot size and p-883 
value is colored by levels.  884 
 885 
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Fig.3. Comparisons of differentially abundant metabolites determined in four 910 
groups. 911 
Differential abundance analysis was performed using all samples (excluding time point T5) in 912 
the study. Age-related differentially abundant metabolites (DAMs) were determined by 913 
comparisons within four groups: the mixture of females and males (sex independent), female 914 
specific, male specific, and sex differences, and by controlling for a 5% Benjamini-Hochberg 915 
false discovery rate (adjusted p-values < 0.05). (a) UpSet plot showing the common DAMs 916 
derived from the comparisons. (b) Over-represented pathways (y-axis) from the 97 common 917 
metabolites of four groups by metabolite set enrichment analysis. (c) Over-represented 918 
pathways (y-axis) from the 187 female specific metabolites markers that also present sex 919 
differences. The number of hits (metabolite) from the hub metabolites set is shown by x-axis, 920 
ratio of the hit number to total metabolites in the enriched pathway is represented by dot size 921 
and p-value is colored by levels. 922 
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Fig.4. Selection of frailty related features   952 
(a) Schematic diagram for the workflow of the feature selection. Frailty index (FI) is composed of 953 
base FI and devFI (deviation from the age- and sex- group median FI). Base FI is age related, 954 
hence leads to age metabolites. FI and devFI metabolites are derived from elastic net 955 
regularization regression via a 100 times repeated 5-fold cross validation approach. FI 956 
metabolites are merged with age metabolites into FI-age features and with devFI metabolites 957 
into devFI features. The FI-union features are the union of FI-age and devFI features. The 958 
workflow is performed in the whole cohort, as well as females and males after the stratification 959 
by sex. (b) UpSet plot showing the overlapping metabolite features from the FI-, age- and 960 
devFI- metabolites. (c) Over-represented pathways (y-axis) from the 104 FI-union features from 961 
the whole cohort. The number of hits (metabolite) from the hub metabolites set is shown by x-962 
axis, ratio of the hit number to total metabolites in the enriched pathway is represented by dot 963 
size and p-value is colored by levels. 964 
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Fig.5. Association study in the whole cohort   993 
(a) Schematic diagram showing the dependent and independent variables in the linear mixed 994 
models for the association study. Dependent variables include Frailty Index (FIc) and devFI 995 
(devFIc, deviation from median FI of the age- and sex- specific group) at the current age (agec), 996 
FI and devFI (FIf/devFIf) at a future age (agef), and FI/devFI change from agec to agef 997 
(ᐃFI/ᐃdevFI). Independent variables include current abundance of metabolites (MAc), 998 
abundance change from a previous age (agep) to agec, ᐃage1 and ᐃage2. For each frailty 999 
outcome, FI-union features identified were individually subjected to linear mixed models. (b) 1000 
Coefficients of eight metabolites of which MAc presents significance in the association with both 1001 
FIc and devFIc. Metabolites are arranged by coefficients (represented by dots) for FIc in 1002 
descending order. The line represents the 95% confidence interval of each coefficient. (c) 27 1003 
metabolites of which the current metabolite abundance presents significance in the association 1004 
with ᐃFI. Metabolites are arranged by coefficients (represented by dots) in descending order. 1005 
Significance was determined by adjusted p-values via Benjamini-Hochberg false discovery rate 1006 
procedure at a cutoff of 0.05, with * for p < 0.05, ** for p < 0.01, and, *** for p < 0.001. (d) List of 1007 
23 metabolites that show occurrences greater than or equal to 2. That is, MA/ᐃMA of metabolite 1008 
presents significance in the association with frailty outcomes of the column.  1009 
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Fig.6. Sex independent metabolite features and association 1033 
(a) UpSet plot showing the overlapping metabolites of frailty index union features of the whole 1034 
cohort, females and males. (b) Coefficients of six metabolites of which metabolite change 1035 
presents significance in the association with both FIc and devFIc in females. Metabolites are 1036 
arranged by coefficients (represented by dots) for FIc in descending order. (c) Coefficients of 26 1037 
metabolites of which metabolite change presents significance in the association with devFI 1038 
change in females. The significance was determined by adjusted p-values via Benjamini-1039 
Hochberg false discovery rate procedure at a cutoff of 0.05, with * for p < 0.05, ** for p < 0.01, 1040 
and, *** for p < 0.001. Metabolites are arranged by coefficients (dots) in descending order. The 1041 
line represents the 95% confidence interval of each coefficient.  1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 
 1063 
 1064 
 1065 
 1066 
 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2025. ; https://doi.org/10.1101/2025.01.22.634160doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.22.634160
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig.7. Performance of metabolite frailty clock in the discovery and validation 1074 
cohorts.  1075 
Frailty models were built via machine learning approaches, with frailty index scores as the 1076 
dependent variable and three sets of variables as the independent variables: 1) The age+sex 1077 
model, linear regression models using age and sex, trained in the discovery and validation 1078 
cohorts respectively; 2) The RF (781 metabolites) model, a random forest model using all 781 1079 
metabolites detected in this study, age and sex; and 3) metabolite frailty clock model, a random 1080 
forest model using 63 informativity-based metabolites, age and sex. The performance of models 1081 
in the corresponding cohort/subcohort (Female, F and male, M) are presented using R2 and 1082 
Root-mean-square deviation (RMSE).  1083 
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